
Sequence Alignment & Computational Thinking
Michael Schatz

Oct 25, 2012
SBU Graduate Genetics

Schatz Lab Overview

Computation

Modeling

Human Genetics

Plant Genomics

Sequencing

Outline

1.  Rise of DNA Sequencing

2.  Sequence Alignment Basics

3.  Understanding Bowtie

4.  Genetics of Autism

Milestones in Molecular Biology

1977
1st Complete Organism
Bacteriophage �X174

5375 bp

Radioactive Chain Termination
5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg

http://www.answers.com/topic/automated-sequencer

Nucleotide sequence of bacteriophage �X174 DNA
Sanger, F. et al. (1977) Nature. 265: 687 - 695

Milestones in Molecular Biology

1995
Fleischmann et al.

1st Free Living Organism
TIGR Assembler. 1.8Mbp

2000
Myers et al.

1st Large WGS Assembly.
Celera Assembler. 116 Mbp

2001
 Venter et al. / IHGSC

Human Genome
Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day.
"The machine was so revolutionary that it could decode in a single day the same amount
of genetic material that most DNA labs could produce in a year. " J. Craig Venter

Milestones in Molecular Biology

2004
454/Roche

Pyrosequencing
Current Specs (Titanium):
1M 400bp reads / run =

1Gbp / day

2007
Illumina

Sequencing by Synthesis
Current Specs (HiSeq 2000):

2.5B 100bp reads / run =
60Gbp / day

2008
ABI / Life Technologies

SOLiD Sequencing
Current Specs (5500xl):
5B 75bp reads / run =

30Gbp / day

Illumina Sequencing by Synthesis

Metzker (2010) Nature Reviews Genetics 11:31-46
http://www.youtube.com/watch?v=l99aKKHcxC4

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

Worldwide capacity exceeds 15 Pbp/year

Milestones in Molecular Biology
There is tremendous interest to sequence:

•  What is your genome sequence?
•  How does your genome compare to my genome?

•  Where are the genes and how active are they?
•  How does gene activity change during development?
•  How does splicing change during development?

•  How does methylation change during development?
•  How does chromatin change during development?
•  How does is your genome folded in the cell?
•  Where do proteins bind and regulate genes?

•  What virus and microbes are living inside you?
•  How has the disease mutated your genome?
•  What drugs should we give you?

•  …

Outline

1.  Rise of DNA Sequencing

2.  Sequence Alignment Basics

3.  Understanding Bowtie

4.  Genetics of Autism

Sequence Alignment
•  A very common problem in computational biology is to find

occurrences of one sequence in another sequence

–  Genome Assembly
–  Gene Finding
–  Comparative Genomics
–  Functional analysis of proteins
–  Motif discovery
–  SNP analysis
–  Phylogenetic analysis
–  Primer Design
–  Personal Genomics
–  …

Short Read Mapping

•  Given a reference and many subject reads, report one or more �good� end-to-
end alignments per alignable read
–  Fundamental computation to genotyping and many assays

•  RNA-seq Methyl-seq FAIRE-seq
•  ChIP-seq Dnase-seq Hi-C-seq

•  Desperate need for scalable solutions
–  Single human requires >1,000 CPU hours / genome
–  1000 hours * 1000 genomes = 1M CPU hours / project

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

Identify variants

Reference

Subject

Searching for GATTACA
•  Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

•  Strategy 1: Brute Force

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
 [How long would it take if we double the genome size, read length?]

 [How long would it take if we double both?]

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, …
–  1 in 16,384 should be GATTACA
–  E=n/(4m) [183,105 expected occurrences]

 [How long do the reads need to be for a significant match?]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

Brute Force Reflections
 Why check every position?

–  GATTACA can't possibly start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

–  Improve runtime to O(n + m) [3B + 7]
•  If we double both, it just takes twice as long
•  Knuth-Morris-Pratt, 1977
•  Boyer-Moyer, 1977, 1991

–  For one-off scans, this is the best we can do (optimal performance)
•  We have to read every character of the genome, and every character of the query
•  For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)

–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction
•  How can we store the suffix array?

 [How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

•  Hopeless to explicitly store 4.5 billion billion characters

•  Instead use implicit representation
•  Keep 1 copy of the genome, and a list of sorted offsets
•  Storing 3 billion offsets fits on a server (12GB)

•  Searching the array is very fast, but it takes time to construct

•  This time will be amortized over many, many searches
•  Run it once "overnight" and save it away for all future queries

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis
•  Selection Sort (Input: list of n numbers)

 for pos = 1 to n
 // find the smallest element in [pos, n]
 smallest = pos
 for check = pos+1 to n

 if (list[check] < list[smallest]): smallest = check

 // move the smallest element to the front
 tmp = list[smallest]
 list[pos] = list[smallest]
 list[smallest] = tmp

•  Analysis

•  Outer loop: pos = 1 to n
•  Inner loop: check = pos to n
•  Running time: Outer * Inner = O(n2) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

Break

Outline

1.  Rise of DNA Sequencing

2.  Sequence Alignment Basics

3.  Understanding Bowtie

4.  Genetics of Autism

In-exact alignment
•  Where is GATTACA approximately in the human genome?

–  And how do we efficiently find them?

•  It depends…
–  Define 'approximately'

•  Hamming Distance, Edit distance, or Sequence Similarity
•  Ungapped vs Gapped vs Affine Gaps
•  Global vs Local
•  All positions or the single 'best'?

–  Efficiency depends on the data characteristics & goals
•  Smith-Waterman: Exhaustive search for optimal alignments
•  BLAST: Hash-table based homology searches
•  Bowtie: BWT alignment for short read mapping

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 1/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 7/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

Match Score: 1/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 6/7 <- We may be very interested in these imperfect matches
 Especially if there are no perfect end-to-end matches

Hamming Distance

•  How many characters are different between the 2 strings?
–  Minimum number of substitutions required to change transform A into B

•  Traditionally defined for end-to-end comparisons
–  Here end-to-end (global) for query, partial (local) for reference

•  Find all occurrences of GATTACA with Hamming Distance ≤ 1
•  Find all occurrences with minimal Hamming Distance

 [What is the running time of a brute force approach?]

Theorem: An alignment of a sequence of length m
with at most k differences must contain
an exact match at least s=m/(k+1) bp long

(Baeza-Yates and Perleberg, 1996)
8"2"

9"

10bp"read"
1"difference"

1"

x" |s|"

7"

9"

8"

7"

6"

6"

5"

5"

9"

8"

7"

6"

4"

3"

10"

5"
–  Proof: Pigeonhole principle

–  1 pigeon can't fill 2 holes

–  Seed-and-extend search
–  Use an index to rapidly find short exact

 alignments to seed longer in-exact alignments
–  BLAST, MUMmer, Bowtie, BWA, SOAP, …

–  Specificity of the depends on seed length
–  Guaranteed sensitivity for k differences
–  Also finds some (but not all) lower quality alignments <- heuristic

Seed-and-Extend Alignment

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

$GATTACA!
A$GATTAC!
ACA$GATT!
ATTACA$G!
CA$GATTA!
GATTACA$!
TACA$GAT!
TTACA$GA!

Burrows-Wheeler Transform

•  Suffix Array is tight, but much larger than genome
•  BWT is a reversible permutation of the genome based on the suffix array
•  Core index for Bowtie (Langmead et al., 2009) and most recent short read

mapping applications: BWA, SOAP, BLASR, etc…

Burrows Wheeler
Matrix

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124

GATTACA$! ACTGA$TA!

LF Property
implicitly encodes
suffix array

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie performance

•  Seed-and-extend search of the BWT
1.  If we fail to reach the end, back-track and resume search
2.  The beginning of the read is used as high confidence seed

•  Report the "best" n alignments
1.  Best = smallest hamming distance, possibly weighted by QV
2.  Some reads will have millions of equally good mapping positions

Recommendation Today: Use Bowtie2 or BWA

Outline

1.  Rise of DNA Sequencing

2.  Sequence Alignment Basics

3.  Understanding Bowtie

4.  Genetics of Autism

Unified Model of Autism
Sporadic Autism: 1 in 100

Familial Autism: 90% concordance in twins

Sporadic"muta>on"

Fails"to"procreate"

Legend

A unified genetic theory for sporadic and inherited autism
Zhao et al. (2007) PNAS. 104(31)12831-12836.

Prediction: De novo mutations of high
penetrance contributes to autism, especially
in low risk families with no history of autism.

Autism and de novo CNVs

Rare de novo and transmitted copy-number variation in autism spectrum disorders.
Levy et al. (2011) Neuron. 70:886-897.

Analysis of Simons Simplex Collection
•  CGH arrays of 510 family quads
•  94 total de novo CNVs discovered

De novo CNVs are more common in
autistic children
•  4:1 ratio in autistic kids relative to their

non-autistic siblings
•  Some recurrence at genes related to

other psychiatric conditions

Exome-Capture and Sequencing
Sequencing of 343 families from the
Simons Simplex Collection
•  Parents plus one child with autism

and one non-autistic sibling
•  Enriched for higher-functioning

individuals

Families prepared and captured together
to minimize batch effects
•  Exome-capture performed with

NimbleGen SeqCap EZ Exome v2.0
targeting 36 Mb of the genome.

•  ~80% of the target at >20x coverage
with ~93bp reads

De novo gene disruptions in children on the autism spectrum
Iossifov et al. (2012) Neuron. 74:2 285-299

Exome Sequencing Pipeline
Data (lane)

FASTQ Filtering Family
Demultiplexing

Individual
Aggregation

Alignment to
reference genome

(BWA)

SNP
(GATK)

Indel
(GATK)

CNV
(HMM)

Micro-
Assembly

De novo
Detection

Genotyping

•  Sequencing instruments make mistakes
–  Quality of read decreases over the read length

•  A single read differing from the reference is
probably just an error, but it becomes more likely
to be real as we see it multiple times

–  Often framed as a Bayesian problem of more likely to be
a real variant or chance occurrence of N errors

–  Accuracy improves with deeper coverage

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATGTG
CTATGTGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TGTGCGCCC

GGTATAC…
CGGTATAC

Homozygous variant

Reference

Subject

Heterozygous variant?

De novo mutation discovery and validation

Concept: Identify mutations not present
in parents.

Challenge: Sequencing errors in the child

or low coverage in parents
lead to false positive de novos

Ref: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
!
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Sib: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC------CCGGGAGATTGTCTTTGCCCGGA...!
!

 6bp heterozygous deletion at chr13:25280526 ATP12A

•  In 343 family quads so far, we see significant enrichment
in de novo likely gene killers in the autistic kids
–  Overall rate basically 1:1 (432:396)
–  2:1 enrichment in nonsense mutations
–  2:1 enrichment in frameshift indels
–  4:1 enrichment in splice-site mutations
–  Most de novo originate in the paternal line in an age-dependent

manner (56:18 of the mutations that we could determine)

•  Observe strong overlap with the 842 genes known to be
associated with fragile X protein FMPR
–  Related to neuron development and synaptic plasticity

De novo Genetics of Autism

De novo gene disruptions in children on the autism spectrum
Iossifov et al. (2012) Neuron. 74:2 285-299

Computational Biology
"Computer science is no more about computers than astronomy is about telescopes."

 Edsger Dijkstra

•  Computer Science = Science of Computation
•  Solving problems, designing & building systems
•  Computers are very, very dumb, but we can instruct them

•  Build complex systems out of simple components
•  They will perfectly execute instructions forever

•  CompBio = Thinking Computationally about Biology

•  Processing: Make more powerful instruments, analyze results
•  Designing & Understanding: protocols, procedures, systems

 “Think Harder & Compute Less”
 Dan Gusfield

Modern Biology Challenges
The foundations of biology will continue to be
observation, experimentation, and interpretation
–  Technology will continue to push the frontier
–  Measurements will be made digitally over large populations,

at extremely high resolution, and for diverse applications

Rise in Quantitative and Computational Demands

1.  Experimental design: selection, collection & metadata

2.  Observation: measurement, storage, transfer, computation

3.  Integration: multiple samples, assays, analyses

4.  Discovery: visualizing, interpreting, modeling

Ultimately limited by the human capacity to execute
extremely complex experiments and interpret results

Questions?
http://schatzlab.cshl.edu

