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Milestones in Molecular Biology 

1977 
1st Complete Organism 
Bacteriophage �X174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 

Nucleotide sequence of bacteriophage �X174 DNA 
Sanger, F. et al. (1977) Nature. 265: 687 - 695 



Milestones in Molecular Biology 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al. / IHGSC  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in Molecular Biology 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://pathogenomics.bham.ac.uk/hts/ 

Worldwide capacity exceeds 15 Pbp/year 



Milestones in Molecular Biology 
There is tremendous interest to sequence: 
 

•  What is your genome sequence?  
•  How does your genome compare to my genome? 

•  Where are the genes and how active are they? 
•  How does gene activity change during development? 
•  How does splicing change during development? 

•  How does methylation change during development? 
•  How does chromatin change during development? 
•  How does is your genome folded in the cell? 
•  Where do proteins bind and regulate genes? 

•  What virus and microbes are living inside you? 
•  How has the disease mutated your genome? 
•  What drugs should we give you? 

•  … 
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Sequence Alignment 
•  A very common problem in computational biology is to find 

occurrences of one sequence in another sequence 

–  Genome Assembly 
–  Gene Finding 
–  Comparative Genomics 
–  Functional analysis of proteins 
–  Motif discovery 
–  SNP analysis 
–  Phylogenetic analysis 
–  Primer Design 
–  Personal Genomics 
–  … 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more �good� end-to-
end alignments per alignable read 
–  Fundamental computation to genotyping and many assays 

•  RNA-seq     Methyl-seq    FAIRE-seq 
•  ChIP-seq     Dnase-seq    Hi-C-seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 
–  1000 hours * 1000 genomes = 1M CPU hours / project 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 1 

•  Strategy 1: Brute Force 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match at offset 2 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A … 

No match at offset 3… 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 9 <-  Checking each possible position takes time 



Brute Force Analysis 

•  Brute Force: 
–  At every possible offset in the genome: 

•  Do all of the characters of the query match? 

•  Analysis 
–  Simple, easy to understand 
–  Genome length = n          [3B] 
–  Query length    = m              [7] 
–  Comparisons: (n-m+1) * m                   [21B] 

•  Overall runtime: O(nm)  
     [How long would it take if we double the genome size, read length?] 

             [How long would it take if we double both?] 



Expected Occurrences 
 The expected number of occurrences (e-value) of a given sequence in a 
genome depends on the length of the genome and inversely on the length 
of the sequence 

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, … 
–  1 in 16,384 should be GATTACA 
–  E=n/(4m)                            [183,105 expected occurrences] 

       [How long do the reads need to be for a significant match?] 
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Brute Force Reflections 
 Why check every position? 

–  GATTACA can't possibly start at position 15          [WHY?] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

–  Improve runtime to O(n + m)           [3B + 7] 
•  If we double both, it just takes twice as long 
•  Knuth-Morris-Pratt, 1977 
•  Boyer-Moyer, 1977, 1991 

–  For one-off scans, this is the best we can do (optimal performance) 
•  We have to read every character of the genome, and every character of the query 
•  For short queries, runtime is dominated by the length of the genome 



Suffix Arrays: Searching the Phone Book 
•  What if we need to check many queries? 

•  We don't need to check every page of the phone book to find 'Schatz' 
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book 

without any loss in accuracy 
 
•  Sorting the genome: Suffix Array (Manber & Myers, 1991) 

–  Sort every suffix of the genome 

 

Split into n suffixes Sort suffixes alphabetically 

[Challenge Question: How else could we split the genome?] 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; 

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

Hi 

Lo 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15;  

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11;  

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 9;  

Lo 
Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9 
•  Middle = Suffix[9] = GATTACA… 

 => Match at position 2! 

Lo 
Hi 



Binary Search Analysis 
•  Binary Search 

 Initialize search range to entire list  
 mid = (hi+lo)/2; middle = suffix[mid] 
 if query matches middle: done 
 else if query < middle: pick low range 
 else if query > middle: pick hi range 

 Repeat until done or empty range         [WHEN?] 

•  Analysis 
•  More complicated method 
•  How many times do we repeat? 

•  How many times can it cut the range in half? 
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n)        [32] 

•  Total Runtime: O(m lg n) 
•  More complicated, but much faster! 
•  Looking up a query loops 32 times instead of 3B 

  [How long does it take to search 6B or 24B nucleotides?] 
 



Suffix Array Construction 
•  How can we store the suffix array? 

    [How many characters are in all suffixes combined?] 

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos 

6 

13 

8 

3 

10 

15 

7 

14 

2 

9 

5 

12 

1 

4 

11 

TGATTACAGATTACC 

•  Hopeless to explicitly store 4.5 billion billion characters 

•  Instead use implicit representation 
•  Keep 1 copy of the genome, and a list of sorted offsets 
•  Storing 3 billion offsets fits on a server (12GB) 

 
•  Searching the array is very fast, but it takes time to construct 

•  This time will be amortized over many, many searches 
•  Run it once "overnight" and save it away for all future queries  



Sorting 
Quickly sort these numbers into ascending order: 

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19 

[How do you do it?] 
 

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19 
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 

 
 

http://en.wikipedia.org/wiki/Selection_sort 



Selection Sort Analysis 
•  Selection Sort (Input: list of n numbers) 

 for pos = 1 to n 
 // find the smallest element in [pos, n] 
 smallest = pos  
 for check = pos+1 to n 

 if (list[check] < list[smallest]): smallest = check 
  
 // move the smallest element to the front 
 tmp = list[smallest] 
 list[pos] = list[smallest] 
 list[smallest] = tmp 

•  Analysis 

•  Outer loop:  pos     = 1 to n 
•  Inner loop:   check = pos to n 
•  Running time:  Outer * Inner = O(n2)         [4.5 Billion Billion] 

[Challenge Questions:  Why is this slow? / Can we sort any faster?] 

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)



Divide and Conquer 
•  Selection sort is slow because it rescans the entire list for each element 

•  How can we split up the unsorted list into independent ranges? 
•  Hint 1:  Binary search splits up the problem into 2 independent ranges (hi/lo) 
•  Hint 2:  Assume we know the median value of a list 

 

n 

[How many times can we split a list in half?] 

= < > 2 x n/2 

= < > = = < > 4 x n/4 

< = > = < = > = < = > = < = > 8 x n/8 

16 x n/16 

2i x n/2i 



QuickSort Analysis 
•  QuickSort(Input: list of n numbers) 

// see if we can quit 
if (length(list)) <= 1): return list 
 
// split list into lo & hi 
pivot = median(list) 
lo = {}; hi = {}; 
for (i = 1 to length(list)) 

if (list[i] < pivot): append(lo, list[i]) 
else:        append(hi, list[i]) 

 
// recurse on sublists 
return (append(QuickSort(lo), QuickSort(hi)) 

 
•  Analysis (Assume we can find the median in O(n)) 

 

                            [~94B] 

http://en.wikipedia.org/wiki/Quicksort 

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)



QuickSort Analysis 
•  QuickSort(Input: list of n numbers) 

// see if we can quit 
if (length(list)) <= 1): return list 
 
// split list into lo & hi 
pivot = median(list) 
lo = {}; hi = {}; 
for (i = 1 to length(list)) 

if (list[i] < pivot): append(lo, list[i]) 
else:        append(hi, list[i]) 

 
// recurse on sublists 
return (append(QuickSort(lo), QuickSort(hi)) 

 
•  Analysis (Assume we can find the median in O(n)) 

 

                            [~94B] 

http://en.wikipedia.org/wiki/Quicksort 

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)



Break 
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In-exact alignment 
•  Where is GATTACA approximately in the human genome? 

–  And how do we efficiently find them? 

•  It depends… 
–  Define 'approximately' 

•  Hamming Distance, Edit distance, or Sequence Similarity 
•  Ungapped vs Gapped vs Affine Gaps 
•  Global vs Local 
•  All positions or the single 'best'? 

–  Efficiency depends on the data characteristics & goals 
•  Smith-Waterman: Exhaustive search for optimal alignments 
•  BLAST: Hash-table based homology searches 
•  Bowtie: BWT alignment for short read mapping 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 1/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 7/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A … 

Match Score: 1/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 6/7 <- We may be very interested in these imperfect matches 
      Especially if there are no perfect end-to-end matches 



Hamming Distance 

•  How many characters are different between the 2 strings? 
–  Minimum number of substitutions required to change transform A into B 

•  Traditionally defined for end-to-end comparisons 
–  Here end-to-end (global) for query, partial (local) for reference 

 
 
 

•  Find all occurrences of GATTACA with Hamming Distance ≤ 1 
•  Find all occurrences with minimal Hamming Distance   

    [What is the running time of a brute force approach?] 



Theorem:  An alignment of a sequence of length m 
with at most k differences must contain 
an exact match at least s=m/(k+1) bp long 

(Baeza-Yates and Perleberg, 1996) 
8"2"
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10"

5"
–  Proof: Pigeonhole principle 

–  1 pigeon can't fill 2 holes 

–  Seed-and-extend search 
–  Use an index to rapidly find short exact  

 alignments to seed longer in-exact alignments 
–  BLAST, MUMmer, Bowtie, BWA, SOAP, … 

–  Specificity of the depends on seed length 
–  Guaranteed sensitivity for k differences 
–  Also finds some (but not all) lower quality alignments <- heuristic 

Seed-and-Extend Alignment 



Bowtie: Ultrafast and memory 
efficient alignment of short DNA 
sequences to the human genome 

Slides Courtesy of Ben Langmead 
(langmead@umiacs.umd.edu) 

 



$GATTACA!
A$GATTAC!
ACA$GATT!
ATTACA$G!
CA$GATTA!
GATTACA$!
TACA$GAT!
TTACA$GA!

Burrows-Wheeler Transform 

•  Suffix Array is tight, but much larger than genome 
•  BWT is a reversible permutation of the genome based on the suffix array 
•  Core index for Bowtie (Langmead et al., 2009) and most recent short read 

mapping applications: BWA, SOAP, BLASR, etc… 

Burrows Wheeler 
Matrix 

BWT(T) T 

A block sorting lossless data compression algorithm.  
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124 

GATTACA$! ACTGA$TA!

LF Property  
implicitly encodes 
suffix array 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 
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Bowtie algorithm 
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Bowtie algorithm 
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Bowtie performance 

•  Seed-and-extend search of the BWT 
1.  If we fail to reach the end, back-track and resume search 
2.  The beginning of the read is used as high confidence seed 

 

•  Report the "best" n alignments 
1.  Best = smallest hamming distance, possibly weighted by QV 
2.  Some reads will have millions of equally good mapping positions 

Recommendation Today: Use Bowtie2 or BWA 



Outline 

1.  Rise of DNA Sequencing 

2.  Sequence Alignment Basics 

3.  Understanding Bowtie 

4.  Genetics of Autism 
 



Unified Model of Autism 
Sporadic Autism: 1 in 100 

Familial Autism: 90% concordance in twins 

Sporadic"muta>on"

Fails"to"procreate"

Legend 

A unified genetic theory for sporadic and inherited autism 
Zhao et al. (2007) PNAS. 104(31)12831-12836. 

Prediction: De novo mutations of high 
penetrance contributes to autism, especially 
in low risk families with no history of autism. 



Autism and de novo CNVs 

Rare de novo and transmitted copy-number variation in autism spectrum disorders. 
Levy et al. (2011) Neuron. 70:886-897. 

Analysis of Simons Simplex Collection 
•  CGH arrays of 510 family quads 
•  94 total de novo CNVs discovered 

De novo CNVs are more common in 
autistic children 
•  4:1 ratio in autistic kids relative to their 

non-autistic siblings 
•  Some recurrence at genes related to 

other psychiatric conditions 



Exome-Capture and Sequencing 
Sequencing of 343 families from the 
Simons Simplex Collection 
•  Parents plus one child with autism 

and one non-autistic sibling 
•  Enriched for higher-functioning 

individuals 
 
Families prepared and captured together 
to minimize batch effects 
•  Exome-capture performed with 

NimbleGen SeqCap EZ Exome v2.0 
targeting 36 Mb of the genome. 

•  ~80% of the target at >20x coverage 
with ~93bp reads 

De novo gene disruptions in children on the autism spectrum 
Iossifov et al. (2012) Neuron. 74:2 285-299 



Exome Sequencing Pipeline 
Data (lane) 

FASTQ  Filtering Family 
Demultiplexing 

Individual 
Aggregation 

Alignment to 
reference genome 

(BWA)  

SNP 
(GATK) 

Indel  
(GATK) 

CNV 
(HMM) 

Micro-
Assembly 

De novo 
Detection 



Genotyping 

•  Sequencing instruments make mistakes 
–  Quality of read decreases over the read length 

•  A single read differing from the reference is 
probably just an error, but it becomes more likely 
to be real as we see it multiple times 

–  Often framed as a Bayesian problem of more likely to be 
a real variant or chance occurrence of N errors 

–  Accuracy improves with deeper coverage 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATGTG 
CTATGTGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TGTGCGCCC 

GGTATAC… 
CGGTATAC 

Homozygous variant 

Reference 

Subject 

Heterozygous variant? 



De novo mutation discovery and validation 

Concept:  Identify mutations not present 
in parents. 

 
Challenge: Sequencing errors in the child 

or low coverage in parents 
lead to false positive de novos 

Ref:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
!
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Sib:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC------CCGGGAGATTGTCTTTGCCCGGA...!
!

  6bp heterozygous deletion at chr13:25280526 ATP12A 



•  In 343 family quads so far, we see significant enrichment 
in de novo likely gene killers in the autistic kids 
–  Overall rate basically 1:1 (432:396) 
–  2:1 enrichment in nonsense mutations 
–  2:1 enrichment in frameshift indels 
–  4:1 enrichment in splice-site mutations 
–  Most de novo originate in the paternal line in an age-dependent 

manner (56:18 of the mutations that we could determine) 

•  Observe strong overlap with the 842 genes known to be 
associated with fragile X protein FMPR 
–  Related to neuron development and synaptic plasticity 

De novo Genetics of Autism 

De novo gene disruptions in children on the autism spectrum 
Iossifov et al. (2012) Neuron. 74:2 285-299 



Computational Biology 
"Computer science is no more about computers than astronomy is about telescopes." 

 Edsger Dijkstra 
 
 

•  Computer Science = Science of Computation 
•  Solving problems, designing & building systems 
•  Computers are very, very dumb, but we can instruct them 

•  Build complex systems out of simple components 
•  They will perfectly execute instructions forever 

 
 
•  CompBio = Thinking Computationally about Biology 

•  Processing: Make more powerful instruments, analyze results 
•  Designing & Understanding: protocols, procedures, systems 

    “Think Harder & Compute Less” 
      Dan Gusfield 

 



Modern Biology Challenges 
The foundations of biology will continue to be 
observation, experimentation, and interpretation 
–  Technology will continue to push the frontier 
–  Measurements will be made digitally over large populations,    

at extremely high resolution, and for diverse applications 
 
 

Rise in Quantitative and Computational Demands 
 

1.  Experimental design: selection, collection & metadata 

2.  Observation: measurement, storage, transfer, computation 

3.  Integration: multiple samples, assays, analyses 

4.  Discovery: visualizing, interpreting, modeling 

Ultimately limited by the human capacity to execute 
extremely complex experiments and interpret results 



Questions? 
http://schatzlab.cshl.edu 

 


